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Abstract 

Unlike color scanners, Digital Still Cameras (DSCs) are 
presented with arbitrary radiance spectra, rather than those 
possible from combinations of three dyes or four pigments. 
Accordingly, it is desirable that their colorimetric 
characterization be as material non-specific as possible. In 
our earlier paper,1 we had proposed a generalization to the 
so-called “Maximum Ignorance With Positivity” 
assumption of Finlayson and Drew,2 in which we 
investigated the effects on accuracy of relaxing the 
assumption of non-correlated relative radiance spectra. We 
found that modeling the correlation matrix of the radiance 
ratio spectrum as a Toeplitz matrix produced a significant 
improvement in the characterization accuracy. In the 
current paper, we examine the effects of relaxing the 
assumption of uniform distribution of the relative 
radiances. 

If the same mean and variance are posited for the 
relative radiance at every wavelength, we conclude that 
there is little effect on accuracy. However, if a dependence 
on wavelength is introduced, a significant improvement in 
accuracy is demonstrated for several of the camera 
simulators used in the study. We find that a linear 
relationship between wavelength and mean relative 
radiance is sufficient. 

The characterization parameters are still compact and 
material non-specific, and consist of the following: 
- Color Matching Functions; 
- Camera Sensitivity Spectra; 
- Taking and Viewing Illuminants; 
- Correlation Width Parameter, α; 
- The coefficient of variation, v, of the spectral radiance 

ratios; and 
- The ratio of the mean spectral radiance ratios at 400 and 

700nm, q. 
 

We evaluate the accuracy of the new technique 
relative to older ones likewise based on linear matrixing 
for several camera sensitivities (one real and two synthetic, 
including one with 4 channels) and several taking 
illuminants. 

In this paper, we also address a concern which has 
arisen with the Minimal Knowledge assumptions since the 
publication of our earlier paper: its ability to contend with 
spikes in the taking illuminant, particularly with the 
mercury lines in fluorescent illuminants. We demonstrate 
that the technique is robust with respect with such features 
in the taking SPD, provided it is identified. 

Introduction 

Colorimetric characterization permits conversion of 
device-dependent coordinates, such as RGB, into device-
independent coordinates (e.g., CIELAB), and/or viceversa. 
It is a central component of color management, and allows 
color images to be exchanged more easily. Color image 
digitizing devices have received considerable attention in 
the literature, though all but the most recent papers have 
emphasized color scanners rather than Digital Still 
Cameras (DSCs). 

There are many similarities between scanners and 
DSCs. Both normally employ a solid-state array sensor and 
Red, Green, and Blue filters. Both normally output RGB 
coordinates spatially sampled from a rectangular grid. It is 
tempting to use similar techniques for colorimetric 
characterization of both. 

However, there are fundamental differences between 
scanners and DSCs. The two which have primary impact 
on colorimetric characterization are: 
 
With scanners, the taking illuminant is almost always 
known, because the source is an integral part of the 
scanner. With DSCs, the source is usually unknown, unless 
an integral flash is used as the sole light source.  
 
Scanners normally digitize objects having highly 
constrained spectra arising from three or four dyes or 
pigments, while DSCs capture original scenes with 
arbitrary spectra resulting from many dyes, pigments, 
metallic surfaces, self-luminous objects, etc. 
 

In our earlier paper, we introduced what we referred to 
as a “Minimal Knowledge” technique for colorimetric 
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characterization of DSCs based on spectral sensitivity 
information. Unlike the earlier “Maximum Ignorance” 
assumptions (both with and without the constraint of non-
negative radiances) wherein the spectral radiances are 
assumed to be uncorrelated, Minimal Knowledge permits 
correlation between radiances at different wavelengths. In 
the earlier paper, we continued to assume an identical 
uniform distribution for all spectral radiances. In this 
paper, we relax this assumption, as well. 

General Formula for Least-Squares Linear Matrix 
We briefly review the least-squares formula for 

computing a linear matrix for conversion of 
radiometrically linear camera RGB into tristimulus values. 
For nc sensor channels (usually 3), ns spectra in the 
characterization set, and a spectrum sampled at nw 
wavelengths (31, for a sampling of 400, 410, 420, ..., 700 
nm), the formula is: 

 
A = (DtStB

tBStD)-1DtStB
tBSvT   (1) 

 
where:  
D is a matrix (nw x nc) containing the device sensitivity 
spectra; 
 
St is a diagonal matrix (nw x nw, zeros off diagonal) 
containing the spectral power distribution of the taking 
illuminant; 
 
B is a matrix (ns x nw) containing the radiance ratio spectra 
of the characterization suite; 
 
Sv is a diagonal matrix (nw x nw, zeros off diagonal) 
containing the spectral power distribution of the viewing 
illuminant; 
 
T is a matrix (nw x 3) containing the color matching 
functions; and 
 
A is the matrix (nc x 3) which is the best linear fit between 
radiometrically linear camera responses and the tristimulus 
values for the spectra in the characterization  suite. 
 

For popular illuminants and spectral sampling intervals 
of 10 or 20nm, the product SvT may be replaced with 
tristimulus integration weights tabulated in ASTM E-308.3 

Inspection of (1) reveals that the results are 
independent of the scaling of the matrix B. If we multiply 
B by an arbitrary factor, it may be factored twice from the 
inverse portion of the formula, and twice from the portion 
which multiplies the inverse. These will cancel, so the 
results are independent of the scaling of B. The same 
applies to the auto-inner-product of B, BtB. We shall use 
this result later in identifying and eliminating superfluous 
parameters. 

After the matrix A is computed, the tristimulus values 
may then be predicted for ne objects in an evaluation suite: 

 

Xp = C · A      (2) 

where C is a matrix (ne x nc) of radiometrically linear 
camera responses (usually containing Red in one column, 
Green in another, and Blue in a third); and Xp is a matrix 
(ne x 3) of the XYZ tristimulus values predicted for each of 
the ne objects. 

Spikes Caused by Fluorescent Taking Illuminant  
A criticism sometimes directed at Minimal Knowledge 

is that the smooth radiance ratio spectra seem to 
underemphasize prominent spikes found in some 
illuminants, particularly those caused by the Mercury lines 
in scenes captured under fluorescent illumination.4 We feel 
this criticism is unjustified if the taking illuminant is 
correctly identified. (Techniques for identifying taking 
illuminant are discussed in excellent papers by other 
authors; a small selection appear in the references.5-9) This 
is because the spectrum to which the smoothness constraint 
applies has had the taking illuminant divided out; for a 
uniformly-illuminated scene consisting solely of non-
fluorescent diffuse reflectors it would be considered a 
reflectance spectrum. The joint effect of taking illuminant 
and such a reflectance spectrum, b · St, will exhibit the 
spikes. 

Further, Minimal Knowledge does not exclude spikes, 
discontinuities, cusps, or other types of ill-behavior in the 
radiance ratio spectra in the characterization suite; it 
merely considers them less likely (as they are in real life). 

Computational Color Constancy 
Digital still cameras may be used under different 

sources, including tungsten, daylight, and fluorescent. 
Typically, users will view the images on a computer 
monitor, either as an end unto itself, or before printing, 
retouching, or incorporating it into a larger document. It is 
unreasonable to expect users to re-balance their monitor 
white point to that of the taking illuminant under which 
each picture was taken! Some form of illuminant 
compensation is highly desirable. 

Note that Equation (1) includes two different 
illuminants: St, the taking illuminant, the spectral power 
distribution under which an image was captured; and Sv, 
the viewing illuminant, which is the spectral power 
distribution under which the colors of the objects in the 
scene are evaluated. The method (and others based on 
similar formulae) tacitly incorporates a portion of 
computational color constancy: provided the taking 
illuminant is correctly identified, and the viewing 
illuminant is known, the matrix which is generated is 
optimized to provide a least-squares match between the 
radiometrically linear camera RGB of the objects in the 
characterization suite as captured under the taking 
illuminant St, and the corresponding XYZ tristimulus 
values as viewed under the viewing illuminant S v. 

Non-Uniform Distribution of Spectral Radiance 
Scenes being digitized will possess spectral radiances 

with lower bounds of zero, but no pat upper bounds. 

IS&T's 2003 PICS Conference

436



 

 

However, if we assume that the illuminant under which the 
scene has been captured has been correctly identified, and 
the correct exposure level has been used by the camera, we 
may consider ratios of the spectral radiances to those of the 
illuminant. These are bounded between zero and unity for 
all diffuse non-fluorescent objects in the scene. 

We continue, as before, to populate the matrix BtB in 
Equation (1) using the means and standard deviations of, 
and correlations between, the radiance ratio spectra in an 
infinitely large characterization set (indeed, the most 
practical way in which to handle an infinite 
characterization suite is statistically); however, we no 
longer necessarily assume identical uniform distributions. 
Although not sufficient for higher-order polynomial 
models (see, for example, Ref. [10]), these statistics are 
sufficient for the first-order model implied in Equation (2) 
above. 

Population of BtB Matrix 
The auto inner product matrix BtB is determined by the 
statistics of the spectral radiance ratios. Specifically, the 
general element of BtB will be: 
 

bij = µi · µj + ρij · σi · σj = µi · µj · (1 + ρij · vi · vj)      (3) 
 
where: 
µi is the mean radiance ratio at wavelength i;  
σi is the standard deviation of the radiance ratio at 
wavelength i; 
ρij is the correlation between the spectral radiance ratios at 
wavelengths i and j; and 
vi is the coefficient of variation (standard deviation divided 
by mean) at wavelength i. 
 
(Variables with a single subscript j have analogous 
meanings to their counterparts with a single subscript i.)  
 

As in our original formulation of Minimal Knowledge, 
we model the correlation as a function of separation in 
wavelength: 

 
ρij = α2/[α2 + (λi - λj)

2]      (4) 
 
where α is the separation in wavelength at which the 
correlation drops to one-half. As α approaches zero, 
Minimal Knowledge approaches Maximum Ignorance 
With Positivity, which may be considered a special case of 
Minimal Knowledge. 
If we assume mean and variance are independent of 
wavelength (as we do in our first computational 
experiment), Equation (3) reduces to: 
 

bij(exp 1) = µ2 · (1 + ρij · v
2)      (3a) 

 
If the radiance ratios are identically distributed, the 

squared mean will cancel when Equation (1) is applied, so 
any non-zero value will produce identical results. In such 
cases, there will be two parameters: v, the coefficient of 

variation, and α, the half width at half-height of the 
correlation. In Experiment 1, we investigate the effects of 
varying both parameters simultaneously. 

We also wish to consider the case where the mean is 
allowed to vary as a function of wavelength. While there 
are an infinity of ways in which this may be accomplished, 
we restrict ourselves here to a simple linear relationship 
between mean radiance ratio and wavelength. We further 
limit the scope here by assuming the coefficient of 
variation is independent of wavelength. While we realize 
this is an arbitrary constraint, we feel compelled to do so in 
the interest of keeping the possibilities manageable. 

We define the quotient of the mean spectral radiance 
ratios at 400 and 700nm as q: 
 

q = µ400 / µ700            (5)  
 

Using the point-slope form of a line, and performing 
some algebraic distribution, the mean spectral radiance 
ratio at any wavelength is modeled as: 
 

µi (exp 2) = µ550 [1 + h · (λi - 550nm)] (6) 
 
where: 
 

h = (1 - q) / (1 + q) / 150nm         (7) 
 

The mean spectral radiance ratio at 550nm, µ550, is a 
multiplicative constant in the matrix B, and, as was pointed 
out before, its value is arbitrary. We elect to make this 1/2, 
without loss of generality. Note that a q of unity returns us 
to the assumption of uniformly distributed spectral 
radiance ratios. 

The free parameters under this set of assumptions, 
then, are: 
α, the correlation half-width at half-height; 
v, the coefficient of variation; and 
q, the ratio of mean spectral radiance ratios at 400nm and 
700nm, respectively. 
 

In Experiment 2, we vary the parameters α and q 
simultaneously. For reasons discussed below, we keep the 
coefficient  of variation constant. 

Experimental Conditions — Experiments 1 &2 

Digital Camera Simulators 
We simulate a digital still camera by multiplying a 

taking illuminant by the known camera sensitivities (which 
may, in practice, be determined by Method A in ISO 
17321). Radiometrically linear RGB are used; if a camera 
applies an opto-electric transfer function, its inverse would 
be applied to the data under consideration. For testing 
accuracy we use the reflectance spectra of 170 objects 
collected by Vrhel. 

We used three camera sensitivities. One was based on 
a monochrome camera with a filter wheel operated in the 
3- shot mode; the sensitivity spectrum of the monochrome 
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camera was kindly provided by Dr. Francisco Imai of the 
Munsell Color Science Laboratory at RIT and the Wratten 
filter transmittance spectra were obtained from the 
literature.11 

Our other two sensitivities were synthetic and had 
Gaussian bandpass functions. The first of these had peak 
sensitivity wavelengths based on the Prime wavelengths 
which are reported to be nearly optimal for a three-sensor 
system.12 The other used four sensitivities to illustrate the 
applicability of this technique (and the potential 
applicability of similar methods) to cameras with more 
than 4 channels. We summarize these in Table 1. 

 
 

Table 1. Cameras used in Experiments 1 & 2 
3-Shot: A digital monochrome camera with sequential 
exposure through 3 Wratten filters: 23A  
(Orange/Red), 58 (Green), and 47 (Blue). 
Prime: A synthetic camera with Gaussian bandpass 
functions; peak sensitivity wavelengths of 605nm 
(Red), 540nm (Green), and 450nm (Blue), and fullwidth at 
half-height bandwidths of 60nm, 60nm, and 45nm, 
respectively. 
4-Channel: A synthetic camera with Gaussian bandpass 
functions; peak sensitivity wavelengths of 625nm 
(Red), 570nm (Yellow/Green), 520nm (Green/Cyan), and 
425nm (Blue), and full-width at half-height bandwidths of 
60nm, 60nm, 60nm, and 45nm, respectively. 
 

Taking and Viewing Illuminants 
We have exercised the technique under five taking 

illuminants: A, D50, D65, D75, and F2. Because users 
typically view captured images on a computer monitor, we 
used a single viewing illuminant, D65, which is the white 
point of the sRGB monitor.13 

Evaluation Criteria 
In order to evaluate the accuracy of a characterization, 

we compare colors predicted by the model given in 
Equation (2) to actual tristimulus values for the 170 object 
spectra of Vrhel and Trussel.14 The latter has become a de 
facto standard evaluation suite. The predicted tristimulus 
values are compared to the correct ones using ∆E*ab. 
Selected statistics of the resulting ∆E*ab distribution are 
computed. 

Without question is it good to have a small average 
∆E*. The average is an indication of how large the color 
error will be for a typical input combination. However, a 
very large error, even if it occurs infrequently, may negate 
even a small mean. Accordingly, we consider also the 90th 
percentile in the distribution of ∆E*ab to provide an 
indication of how large are the largest of the errors.  

These two criteria will be used regardless of whether 
the taking and viewing illuminants are the same or 
different. Although larger average and 90th percentile 
∆E*s would be expected when the two illuminants are 

quite different (such as an St of Illuminant A and an Sv of 
D65), different methods of computing the transformation 
matrix for the same pair of illuminants may be directly 
compared. 

Experimental Conditions — Experiment 1 

In Experiment 1, we continue to assume a Toeplitz 
correlation matrix, and identical distribution of the 
radiance ratio spectra, but not necessarily a uniform 
distribution as had been assumed in our previous paper. As 
was pointed out earlier, this introduces one additional free 
parameter, the coefficient of variation, v, over and above 
the existing parameter α (the half-width at half-height of 
the correlations). The coefficient of variation of a uniform 
distribution with a lower bound of zero is √3 / 3. We wish 
to include this value, as well as larger and smaller values. 
Accordingly, we will consider coefficients of variation of 
√1/3, √2/3, √3/3, √4/3, √5/3, √6/3, √7/3, and √8/3, 
admitting skewed positive and skewed negative 
distributions (in addition to the unskewed uniform). 

We considered α values ranging from 0nm (Maximum 
Ignorance With Positivity, or MIWP) to 200nm, in 25nm 
increments. Although it does not correspond to an actual 
level of α, we also include Maximum Ignorance without 
Positivity (MI). 

Results and Discussion — Experiment 1 

In all cases, the coefficient of variation v had no significant 
effect. Plots of both average and 90th percentile of ∆E*ab as 
functions of v were essentially flat. The parameter α, 
however, exhibited a significant effect. For the 3-shot 
camera, troughs were exhibited in the general vicinity of 
100nm, indicating an optimum near there. For the synthetic 
cameras, which had generally narrower bandwidths, the 
optimal value of α was smaller, usually 50 - 75 nm. In all 
cases, the α = 75nm solution was better than either the MI 
or MIWP solutions. 

There was, as expected, less accuracy in general as the 
taking illuminant differed increasingly from the viewing 
illuminant. The least accuracy was obtained for a taking 
illuminant St of Illuminant A. 

In addition, with other factors constant, the best results 
were obtained, not surprisingly, with the 4 channel camera. 
The Prime wavelength camera was second best, and the 3- 
shot camera was third. 

Experimental Conditions — Experiment 2 

In Experiment 2, we varied both the parameter α and the 
ratio of mean spectral radiance ratio at 400 and 700 nm. 
Because the coefficient of variation, v, had so insignificant 
an effect in Experiment 1, it was kept at its original value 
of √3/3, as it had been before. (As expected, when we later 
substituted different values of v in these calculations, the 
results were essentially unchanged.) 
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Again, the parameter á varied in 25 nm increments 
from 0 to 200nm, with the additional condition of MI 
added. Logarithmically uniformly spaced q values of 1/4, 
√2/4, 1/2, √2/2, 1 (which corresponds to identically 
distributed radiance ratios), √2, 2, √8 and 4 were used. 

Table 2. Results from Experiment 2. 
 
Results for 3-Shot Camera 
Taking 

Illum  MI MIWP MK 
(old) 

MK 
(new) 

A avg: 
90% 

5.72 
8.50 

6.82 
11.37 

4.72 
8.26 

3.53 
5.55 

D50 avg: 
90% 

5.85 
9.15 

5.42 
9.14 

4.03 
7.12 

3.05 
4.98 

D65 avg: 
90% 

6.29 
9.63 

4.85 
8.04 

3.83 
6.63 

2.89 
4.61 

D75 avg: 
90% 

6.46 
9.69 

4.66 
7.62 

3.76 
6.53 

2.83 
4.60 

F2 avg: 
90% 

6.59 
10.50 

3.26 
7.51 

2.34 
4.45 

1.94 
3.73 

 
Results for Prime Wavelength Camera: 
Taking 

Illum  MI MIWP MK 
(old) 

MK 
(new) 

A avg: 
90% 

5.26 
8.95 

3.54 
7.61 

1.81 
4.16 

1.66 
3.53 

D50 avg: 
90% 

4.91 
7.49 

3.98 
8.68 

1.64 
3.71 

1.56 
3.87 

D65 avg: 
90% 

4.84 
6.96 

3.99 
8.62 

1.77 
3.98 

1.62 
3.79 

D75 avg: 
90% 

4.84 
7.07 

4.01 
8.60 

1.86 
4.30 

1.67 
3.78 

F2 avg: 
90% 

7.95 
11.92 

7.47 
16.41 

2.47 
5.30 

2.15 
5.10 

 
Results for 4-Channel Camera: 
Taking 

Illum  MI MIWP MK 
(old) 

MK 
(new) 

A avg: 
90% 

4.37 
6.97 

5.06 
8.78 

1.93 
3.14 

1.29 
2.21 

D50 avg: 
90% 

4.47 
7.01 

5.02 
8.75 

1.89 
2.98 

1.30 
2.31 

D65 avg: 
90% 

4.10 
6.25 

4.63 
8.19 

1.77 
2.89 

1.24 
2.40 

D75 avg: 
90% 

3.95 
6.21 

4.48 
7.97 

1.73 
2.86 

1.21 
2.52 

F2 avg: 
90% 

4.53 
6.81 

4.09 
8.86 

0.98 
2.08 

0.72 
1.69 

Averages and 90th percentiles of the ∆E*ab distributions 
generated by the Maximum Ignorance (MI), Maximum Ignorance 
With Positivity (MIWP), Minimal Knowledge with uniform 
distribution (MK old), and Minimal Knowledge with q ratio = 
1/2 (MK new). Correlation Width parameter α = 50nm for both 
MK conditions. 

Results and Discussion — Experiment 2 

In many cases, accuracy was improved for the q values less 
than unity, while accuracy always suffered when q > 1 was 
tested. This is not surprising, as an examination of the 
evaluation data suite shows a strong contingency of mean 
radiance ratio on wavelength with a q of about 1/4.  

The optimal value of α was usually between 50 and 
100nm, with the 50nm results at or close to optimum. 
Accordingly, we report the results, in Table 2, for α = 
50nm. As in Experiment 1, the most accurate results for a 
given taking illuminant and parameter set were with the 4-
channel camera, with the Prime wavelength camera in 
second. Also, as before, the most accurate predictions 
tended to come when the taking and viewing illuminants 
matched. 

Experimental Conditions — Experiment 3 

A third experiment was conducted, using 1728 different 
synthetic camera sensitivity sets. The Red sensitivities had 
peaks at 600, 605, 610, and 615nm and full-width at 
halfheight bandwidths of 55, 60, and 65nm; the Green had 
peaks of 530, 535, 540, and 545nm and bandwidths of 50, 
55, and 60nm; and the Blue had peaks at 440, 445, 450, 
and 455nm with bandwidths of 40, 45, and 50nm. Thus, 12 
different Red sensitivities, 12 Green sensitivities, and 12 
Blue sensitivities were all exercised in a 123 factorial plan. 

Solutions using Maximum Ignorance, Maximum 
Ignorance with Positivity, Minimal Knowledge (v = √3/3, 
q = 0; the original MK), and Minimal Knowledge (v = 
√3/3, q = 1/2) were computed for each of the five 
illuminants and each of the 1728 camera sensitivities for a 
total of 8640 combinations. (An α of 50nm was used for 
both the original and the new MK solutions.) 

Results — Experiment 3 

Of the 8640 combinations, the average ∆E* was lower for 
the new technique than for the better of MI or MIWP in all 
but 3 cases (99.96% of the time). The ∆E*s averaged 44% 
lower for the new method. Further, the 90th percentile ∆E* 
was lower for the new method all but 38 times (99.6% of 
the cases), and the 90 percentiles, on average, were 43% 
lower for the new method. 

The new method also demonstrated improvement over 
the original Minimal Knowledge assumptions. The average 
∆E* was lower for the new technique for all 8640 
combinations, and the average was 16% lower. The 90th 
percentile was lower for the new MK all but 113 times 
(98.6% of the cases), and averaged 14% lower. 

Conclusions 

The Minimal Knowledge assumptions for DSC 
characterization have been extended by relaxing the 
assumption of uniformly and identically distributed 
spectral radiance ratios. The assumption of uniformity was 
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found to have virtually no effect on the accuracy of the 
characterization when only it was relaxed. However, when 
the assumption of identically distributed spectral radiance 
ratios was also relaxed, a significant increase in 
characterization accuracy was observed. 

The minimal knowledge assumptions as developed in 
this paper involve the following parameters: 
• the correlation width parameter, α; 
• the coefficient of variation, v; and 
• the ratio of mean spectral radiance ratio at 400 and 700 
nm, q. 
 

Of these three parameters, all of which are material 
independent, the first had been included in the original 
formulation of Minimal Knowledge, and the second was 
found to have no significant effect. The third, however, 
permitted an increase of approximately 15 percent over the 
results obtained by the original formulation of Minimal 
Knowledge, and over 40% better than those obtained by 
either set of Maximum Ignorance assumptions. 

In order to characterize a DSC, one also needs, in 
addition to these three parameters, the sensitivity spectra of 
the device and the spectral power distributions of the 
taking and viewing illuminants. Separate characterizations 
would be performed for each combination of taking and 
viewing illuminants. 

We have found that an α of 50nm and a q ratio of ½ 
provide excellent results. While it was found that the 
parameter v had no significant effect, we have used a value 
of √3/3 to obtain the improved results cited. 

Briefly investigated was the ability of the Least 
Squares formula to address cameras with four channels. 
Minimal Knowledge, particularly in its new incarnation, 
was able to provide significant increase in accuracy with 
the addition of a fourth channel, while the Maximum 
Ignorance techniques were not. 

Also demonstrated was the ability of Minimal 
Knowledge (and the potential ability of similar techniques 
based on the least squares formula given in Equation [1]) 
to accurately compensate for differences between taking 
and viewing illuminants, provided both are known.  
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